-
當(dāng)前位置:首頁 > 創(chuàng)意學(xué)院 > 技術(shù) > 專題列表 > 正文
列舉一種經(jīng)典人工智能算法(列舉一種經(jīng)典人工智能算法并簡要解釋該算法的基本思路)
大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于列舉一種經(jīng)典人工智能算法的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。
ChatGPT國內(nèi)免費(fèi)在線使用,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對話答疑等等
只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端
官網(wǎng):https://ai.de1919.com
本文目錄:
一、人工智能中的算法種類
SVM算法,粒子群算法,免疫算法,種類太多了,各種算法還有改進(jìn)版,比如說遺傳神經(jīng)網(wǎng)絡(luò)。從某本書上介紹,各種算法性能、效力等各不同,應(yīng)依據(jù)具體問題選擇算法。
二、生活中的人工智能之搜索和推薦算法
姓名:陳心語 學(xué)號:21009102266 書院:海棠1號書院
轉(zhuǎn)自: 人工智能在搜索中的應(yīng)用_u014033218的專欄-CSDN博客
人工智能在搜索的應(yīng)用和實(shí)踐_qq_40954115的博客-CSDN博客
【嵌牛導(dǎo)讀】日常生活中的搜索和推薦算法也與人工智能有所關(guān)聯(lián),讓我們一起來看看吧!
【嵌牛鼻子】人工智能運(yùn)用于搜索和推薦算法。
【嵌牛提問】人工智能在搜索和推薦算法中有什么運(yùn)用呢?
【嵌牛正文】
智能交互
智能交互有三個方面的這部分組成,第一個就是Query推薦,這是比較古老的課題;第二個做智能導(dǎo)購,這是現(xiàn)在正在做的一個原形,后面我會講為什么做智能導(dǎo)購;第三個內(nèi)容的展示和個性化的創(chuàng)意。就是說你把商品怎么展示給用戶,也是我們認(rèn)為是交互的一部分。
第一個是Query推薦,這個問題怎么來抽象呢?Query推薦是一個用戶當(dāng)前Query下面我們怎么推薦其它Query,這是我們相關(guān)搜索一樣的。我們推薦這樣的一個Query以后,如果用戶一旦點(diǎn)了其中的一個Query,用戶的狀態(tài)就會發(fā)生變化,從當(dāng)前的Query跳到另外一個Query,這是用戶狀態(tài)的變化。第二個就是說我們怎么評價我們推薦的Query的好壞,它由幾部分組成,一個Query有沒有被點(diǎn),第二個就是說推薦Query里面,它的SRP頁會不會點(diǎn),因?yàn)镼uery推薦本質(zhì)上不是Query推薦做的最好就是最好的,它是說最終要在搜索SRP用戶有沒有買,有沒有點(diǎn)擊,這才是做的好的,這是第二個收益。還有一個更加間接的,通過Query推,這個狀態(tài)轉(zhuǎn)到下一個狀態(tài)以后,這個里面還會推其它Query,還會有其它點(diǎn)擊,這個時候也是個間接推薦。如果我不推Query就不能到這個狀態(tài),不到狀態(tài)不會有這個Query,不會有這個收益。我們了解,這就是典型的一個馬爾科夫決策過程,我們是用強(qiáng)化學(xué)習(xí)來做的,Actions就是我們的Query list,根據(jù)用戶和當(dāng)前Query推薦其他Query,狀態(tài)就是User + Query,收益就是包括推薦Query擊,還有一個間接收益,間接收益通過bellman 公式可以算出來,這就是一個DQN的強(qiáng)化學(xué)習(xí)項(xiàng)目。
智能導(dǎo)購
現(xiàn)在的搜索呈現(xiàn)的問題就是說,如果去看搜索的Query都是一些品類詞、品牌詞、型號詞或者屬性詞。假定用戶他知道買什么再來搜索搜,但是有各很大的東西用戶不知道買什么嗎?智能導(dǎo)購就是做做一個類似智能導(dǎo)購機(jī)器人的產(chǎn)品,引導(dǎo)用戶怎么搜,用戶也可以主動問,獲取知識或購物經(jīng)驗(yàn)。這是后臺的算法的一個原形,不久后會上線。
智能內(nèi)容
因?yàn)樘詫毜纳唐?,賣家為了適應(yīng)我們的引擎,做了大量的SEO,里面都是羅列熱門的關(guān)健詞,導(dǎo)致問題淘寶的標(biāo)題沒什么差異,都寫的差不多,看標(biāo)題也不知道什么東西,或者知道但里面沒有很多特色的內(nèi)容。我們做智能內(nèi)容很重要的出發(fā)點(diǎn)是怎么從商品的評價、詳情頁、屬性里面挖出一些比較有賣點(diǎn),或者商品比較有特色的東西展示給用戶,讓用戶更好的了解商品,這是第一個。第二個淘寶上面還有類似商品聚合的,比如清單,生成一個清單,怎么給清單生成一個比較好的導(dǎo)入的描述,讓用戶描述這個清單干什么。這里面主要做了這兩個事情。具體怎么做的?一個會生成一些Topic,比如行業(yè)運(yùn)營加上我們挖的一些點(diǎn),比如像手機(jī)一般大家關(guān)注點(diǎn)會是手機(jī)的性價比,拍照是不是清晰,還有速度是不是快,是不是發(fā)熱什么的,這是用戶關(guān)注的興趣點(diǎn)。然后它會根據(jù)這個商品會選擇一個興趣點(diǎn),通過Seq2seq生成短文本。
語義搜索
我們的商品屬性基本上是比較標(biāo)準(zhǔn)化的,因?yàn)檫@里淘寶有一個這樣的商品庫,非標(biāo)準(zhǔn)化的內(nèi)容是沒法上傳的。導(dǎo)致的問題是我們的商品內(nèi)容相對來說是比較規(guī)范化的,但是用戶的輸入的Query不是這樣的,比如我這里舉一些例子,比如一個新品有各種表達(dá),2017新品,2017冬季新品,是吧?新品,有很多的表達(dá)。所以就是從從用戶的需求跟商品的內(nèi)容,就存在了一個語義的Gap。還有我們經(jīng)常舉例,比如三口之家用的電飯鍋,很多這種語義的問題,這個語義從語義角度解決語義Match的事情。
大概會有這么幾個方面。比如一個就是意圖的理解,還有意圖的Mapping,比如大容量冰箱,首先知道大的是跟冰箱的容量相關(guān)的,冰箱是個類目,最后要Mapping到人的冰箱,把‘大’改寫成一個容量大于多少升,類目是冰箱這樣才能夠比較好的解決我們這個搜索的這個召回的問題。 第二個語義理解,這里面包括Query和商品都要做語義理解,比如通過image tagging計(jì)算從圖片里面抽取很多文本的語義標(biāo)簽補(bǔ)充到商品文本索引中。 第三個就是現(xiàn)在有這個端到端的深度學(xué)習(xí)技術(shù)來直接學(xué)Query和商品的Similarity,通過端到端的深度學(xué)習(xí)技術(shù)來做語義的召回和語義的相關(guān)性。
智能匹配
主要就是講個性化,做個性化的首要就是個性化數(shù)據(jù)。個性化本質(zhì)上就是說以用戶為中心構(gòu)建用戶的標(biāo)簽,用戶的行為,還有用戶的偏好,再通過這些數(shù)據(jù)找到,去Match到商品,比如說你看過相似商品,典型的協(xié)同過濾,還有你偏好的品牌的其它商品。那就是基于這些經(jīng)歷了一個以用戶為中心的電商圖譜,這里面還加了一些輔助的數(shù)據(jù),比如商品的相似度,店鋪之間的相似度,這樣構(gòu)建了我們這樣的叫電商圖譜。
個性化召回與向量化召回
召回是這樣的,首先從咱們的電商圖譜里取出用戶的信息,包括比如說年齡性別,還有當(dāng)?shù)販囟仁嵌嗌?,還有行為足跡等等之類的,社交現(xiàn)在沒用了,因?yàn)檫@是幾年前社交特別火,什么都要摻和一下,其實(shí)社交,信息的社交到電商其實(shí)風(fēng)馬牛不相及的領(lǐng)域,沒有任何價值。所以現(xiàn)在好友這東西幾乎沒有用。因?yàn)椴煌琎uery中,用戶信息重要性是不一樣的,我們根據(jù)上下文會做用戶信息的篩選或者排序,會找出比較重要的信息做個性化召回。以上是淘寶商品索引結(jié)構(gòu),傳統(tǒng)的搜索關(guān)鍵字是通過搜索關(guān)鍵字召回,而個性化商品索引,除了Query還會有商品簇,簇與簇之間的關(guān)系,品牌店鋪等等之類的,會加很多個性化的特征做召回,通過這種帶的好處是召回的結(jié)果跟用戶是直接相關(guān)的,就召回這一步帶來個性化。
但是這種基于行為召回還是存在一個問題的。最重要的問題它的泛化能力會比較差。最典型的比如說你通過協(xié)同過濾來做,如果兩個商品,沒有用戶同時看過的話,這兩個商品你認(rèn)為他們相似度是零,這個結(jié)論是錯的,但是如果通過協(xié)同過濾就有這個問題。我們今年實(shí)現(xiàn)了向量化召回,包括兩步:一個是Similarity learning,通過這個深度學(xué)習(xí)做端到端的Similarity learning,就會把這個我們的User 和Item會變成一個向量;第二步就是做向量化召回,比如層次聚類,隨機(jī)游走,learning to hash等,這樣的話就是說會極大的提升召回的深度。
個性化工作
在個性化領(lǐng)域其實(shí)最重要的一個核心的問題就是怎么去理解用戶,怎么感知用戶和預(yù)測用戶行為及偏好。
首先是數(shù)據(jù),用戶在淘寶有兩個中類型重要的基本信息:一個是用戶標(biāo)簽,比如年齡、性別、職業(yè)等;第二是用戶足跡,比如 點(diǎn)過,買過的商品,店鋪等;
其次是用戶感知要和搜索上下文相關(guān),即這個用戶的表征和要用戶搜索意圖相關(guān);
第三是搜索有很多差異化的任務(wù),比如用戶消費(fèi)能力的預(yù)估, User到Item的CTR預(yù)估和用戶購物狀態(tài)預(yù)估等,是為每個任務(wù)做個端到端的深度學(xué)習(xí)模型還是用統(tǒng)一的用戶表征來完成不同的Task?如果每一個任務(wù)都做端到端深度學(xué)習(xí)會有很多問題,比如離線和在線的性能開銷會大很多,或部分任務(wù)樣本太少。
如圖是用戶感知深度模型,輸入X是用戶的點(diǎn)擊行為序列,下一步是embedding,embedding完以后,通過LSTM把用戶行為序列做embedding,因?yàn)樵谒阉饔脩舾兄蚎uery相關(guān),所以加入query 的 attention層,選擇和當(dāng)前query有關(guān)系的行為,表征完是Multi-task learning 網(wǎng)絡(luò)。整個這個網(wǎng)絡(luò)的參數(shù)大概有一百億個參數(shù),我在雙11我們還實(shí)現(xiàn)了在線學(xué)習(xí)。
算法包括智能交互、語義搜索、智能匹配和搜索策略四個方向。
智能交互
商品搜索就是帶交互的商品推薦,用戶通過關(guān)鍵字輸入搜索意圖,引擎返回和搜索意圖匹配的個性化推薦結(jié)果,好的交互技術(shù)能夠幫助到用戶更好的使用搜索引擎,目前搜索的交互主要是主動關(guān)鍵字輸入和關(guān)鍵字推薦,比如搜索框中的默認(rèn)查詢詞和搜索結(jié)果中的文字鏈等,推薦引擎根據(jù)用戶搜索歷史、上下文、行為和狀態(tài)推薦關(guān)鍵字。和商品推薦的區(qū)別是,關(guān)鍵字推薦是搜索鏈路的中間環(huán)節(jié),關(guān)鍵字推薦的收益除了關(guān)鍵字的點(diǎn)擊行為外,還需要考慮對整個購物鏈路的影響,包括在推薦關(guān)鍵字的后續(xù)行為中是否有商品點(diǎn)擊、加購和成交或跳轉(zhuǎn)到另外一個關(guān)鍵字的后繼行為,這是一個典型的強(qiáng)化學(xué)習(xí)問題,action 是推薦的關(guān)鍵字候選集合,狀態(tài)是用戶當(dāng)前搜索關(guān)鍵詞、上下文等,收益是搜索引導(dǎo)的成交。除了被動的關(guān)鍵字推薦,我們也在思考搜索中更加主動的交互方式,能夠做到像導(dǎo)購員一樣的雙向互動,主動詢問用戶需求,挑選個性化的商品和給出個性化的推薦理由,目前我們已經(jīng)在做智能導(dǎo)購和智能內(nèi)容方向的技術(shù)原型及論證,智能導(dǎo)購在技術(shù)上主要是借鑒對話系統(tǒng),通過引導(dǎo)用戶和引擎對話與關(guān)鍵字推薦方式互為補(bǔ)充,包括自然語言理解,對話策略,對話生成,知識推理、知識問答和商品搜索等模塊,功能主要包括:a. 根據(jù)用戶搜索上下文生成引導(dǎo)用戶主動交互的文本,比如搜索“奶粉”時,會生成“您寶寶多大?0~6個月,6個月到1歲….”引導(dǎo)文案,提示用戶細(xì)化搜索意圖,如果用戶輸入“3個月”后,會召回相應(yīng)段位的奶粉,并在后續(xù)的搜索中會記住對話狀態(tài)“3個月”寶寶和提示用戶“以下是適合3個月寶寶的奶粉”,b. 知識導(dǎo)購,包含提高售前知識問答或知識提示,比如“3個月寶寶吃什么奶粉” 回答“1段”,目前對話技術(shù)還不太成熟,尤其是在多輪對話狀態(tài)跟蹤、知識問答和自動評價幾個方面,但隨著深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)和生成對抗學(xué)習(xí)等技術(shù)在NLP、對話策略、閱讀理解等領(lǐng)域的應(yīng)用,越來越多的訓(xùn)練數(shù)據(jù)和應(yīng)用場景,domain specific 的對話技術(shù)未來幾年應(yīng)該會突飛猛進(jìn);智能內(nèi)容生成,包括生成或輔助人工生成商品和清單的“賣點(diǎn)”,短標(biāo)題和文本摘要等,讓淘寶商品表達(dá)更加個性化和多元化。
語義搜索
語義搜索主要是解決關(guān)鍵字和商品內(nèi)容之間的語義鴻溝,比如搜索“2~3周歲寶寶外套”,如果按照關(guān)鍵字匹配召回結(jié)果會遠(yuǎn)小于實(shí)際語義匹配的商品。語義搜索的范圍主要包括:a. query tagging和改寫,比如新品,年齡,尺碼,店鋪名,屬性,類目等搜索意圖識別和歸一化,query tagging模型是用的經(jīng)典的序列標(biāo)注模型 bi-lstm + CRF,而標(biāo)簽分類(歸一化) 作為模型另外一個任務(wù),將序列標(biāo)注和分類融合在一起學(xué)習(xí);b. query 改寫,主要是計(jì)算query之間相似度,把一個query改寫成多個語義相似的query,通常做法是先用不同改寫策略生成改寫候選query集合,比如詞替換、向量化后top k、點(diǎn)擊商品相似度等,然后在用ltr對后續(xù)集合排序找出合適的改寫集合,模型設(shè)計(jì)和訓(xùn)練相對簡單,比較難的是如何構(gòu)建高質(zhì)量的訓(xùn)練樣本集合,線上我們用bandit 的方法探測部分query 改寫結(jié)果的優(yōu)劣,離線則用規(guī)則和生成對抗網(wǎng)絡(luò)生成一批質(zhì)量較高的樣本; c. 商品內(nèi)容理解和語義標(biāo)簽,通過商品圖片,詳情頁,評價和同義詞,上下位詞等給商品打標(biāo)簽或擴(kuò)充商品索引內(nèi)容,比如用 image tagging技術(shù)生成圖片的文本標(biāo)簽豐富商品內(nèi)容,或者更進(jìn)一步用直接用圖片向量和文本向量融合,實(shí)現(xiàn)富媒體的檢索和查詢;d. 語義匹配,經(jīng)典的DSSM 模型技術(shù)把query 和商品變成向量,用向量內(nèi)積表達(dá)語義相似度,在問答或閱讀理解中大量用到多層LSTM + attention 做語義匹配,同樣高質(zhì)量樣本,特別是高質(zhì)量負(fù)樣本很大程度上決定了模型的質(zhì)量,我們沒有采樣效率很低的隨機(jī)負(fù)采樣,而是基于電商知識圖譜,通過生成字面相似但不相關(guān)的query及相關(guān)文檔的方法生成負(fù)樣本。從上面可以看到query tagging、query相似度、語義匹配和語義相關(guān)性是多個目標(biāo)不同但關(guān)聯(lián)程度非常高的任務(wù),下一步我們計(jì)劃用統(tǒng)一的語義計(jì)算框架支持不同的語義計(jì)算任務(wù),具體包括1. 開發(fā)基于商品內(nèi)容的商品表征學(xué)習(xí)框架,為商品內(nèi)容理解,內(nèi)容生成,商品召回和相關(guān)性提供統(tǒng)一的商品表征學(xué)習(xí)框架,重點(diǎn)包括商品標(biāo)題,屬性,詳情頁和評價等文本信息抽取,圖像特征抽取和多模信號融合;2. query 表征學(xué)習(xí)框架,為query 類目預(yù)測,query改寫,query 推薦等提供統(tǒng)一的表征學(xué)習(xí)框架,重點(diǎn)通過多個query 相似任務(wù)訓(xùn)練統(tǒng)一的query表征學(xué)習(xí)模型;3. 語義召回,語義相關(guān)性等業(yè)務(wù)應(yīng)用模型框架。語義搜索除了增加搜索結(jié)果相關(guān)性,提升用戶體驗(yàn)外,也可以一定程度上遏制淘寶商品標(biāo)題堆砌熱門關(guān)鍵詞的問題。
智能匹配
這里主要是指個性化和排序。內(nèi)容包括:a. ibrain (深度用戶感知網(wǎng)絡(luò)),搜索或推薦中個性化的重點(diǎn)是用戶的理解與表達(dá),基于淘寶的用戶畫像靜態(tài)特征和用戶行為動態(tài)特征,我們基于multi-modals learning、multi-task representation learning以及LSTM的相關(guān)技術(shù),從海量用戶行為日志中直接學(xué)習(xí)用戶的通用表達(dá),該學(xué)習(xí)方法善于“總結(jié)經(jīng)驗(yàn)”、“觸類旁通”,使得到的用戶表達(dá)更基礎(chǔ)且更全面,能夠直接用于用戶行為識別、偏好預(yù)估、個性化召回、個性化排序等任務(wù),在搜索、推薦和廣告等個性化業(yè)務(wù)中有廣泛的應(yīng)用場景,感知網(wǎng)絡(luò)超過10B個參數(shù),已經(jīng)學(xué)習(xí)了幾千億次的用戶行為,并且會保持不間斷的增量學(xué)習(xí)越來越聰明; b. 多模學(xué)習(xí),淘寶商品有文本、圖像、標(biāo)簽、id 、品牌、類目、店鋪及統(tǒng)計(jì)特征,這些特征彼此有一定程度的冗余和互補(bǔ),我們利用多模學(xué)習(xí)通過多模聯(lián)合學(xué)習(xí)方法把多維度特征融合在一起形成統(tǒng)一的商品標(biāo)準(zhǔn),并多模聯(lián)合學(xué)習(xí)中引入self-attention實(shí)現(xiàn)特征維度在不同場景下的差異,比如女裝下圖片特征比較重要,3C下文本比較重要等;c. deepfm,相對wide & deep 模型,deepfm 增加了特征組合能力,基于先驗(yàn)知識的組合特征能夠應(yīng)用到深度學(xué)習(xí)模型中,提升模型預(yù)測精度;d. 在線深度排序模型,由于行為類型和商品重要性差異,每個樣本學(xué)習(xí)權(quán)重不同,通過樣本池對大權(quán)重樣本重復(fù)copy分批學(xué)習(xí),有效的提升了模型學(xué)習(xí)穩(wěn)定性,同時通過融合用戶狀態(tài)深度ltr模型實(shí)現(xiàn)了千人千面的排序模型學(xué)習(xí);e. 全局排序,ltr 只對單個文檔打分然后按照ltr分?jǐn)?shù)和打散規(guī)則排序,容易導(dǎo)致搜索結(jié)果同質(zhì)化,影響總頁效率,全局排序通過已知排序結(jié)果做為上下文預(yù)測下一個位置的商品點(diǎn)擊概率,有效提升了總頁排序效率;f. 另外工程還實(shí)現(xiàn)了基于用戶和商品向量的向量召回引擎,相對倒排索引,向量化召回泛化能力更強(qiáng),對語義搜索和提高個性化匹配深度是非常有價值的。以上實(shí)現(xiàn)了搜索從召回、排序特征、排序模型、個性化和重排的深度學(xué)習(xí)升級,在雙11無線商品搜索中帶來超過10% (AB-Test)的搜索指標(biāo)提升。
智能決策
搜索中個性化產(chǎn)品都是成交最大化,導(dǎo)致的問題是搜索結(jié)果趨同,浪費(fèi)曝光,今年做的一個重要工作是利用多智能體協(xié)同學(xué)習(xí)技術(shù),實(shí)現(xiàn)了搜索多個異構(gòu)場景間的環(huán)境感知、場景通信、單獨(dú)決策和聯(lián)合學(xué)習(xí),實(shí)現(xiàn)聯(lián)合收益最大化,而不是此消彼長,在今年雙11中聯(lián)合優(yōu)化版本帶來的店鋪內(nèi)和無線搜索綜合指標(biāo)提升12% (AB-Test),比非聯(lián)合優(yōu)化版本高3% (AB-Test)。
性能優(yōu)化
在深度學(xué)習(xí)剛起步的時候,我們意識到深度模型inference 性能會是一個瓶頸,所以在這方面做了大量的調(diào)研和實(shí)驗(yàn),包括模型壓縮(剪枝),低秩分解,量化和二值網(wǎng)絡(luò),由于缺少相應(yīng)的指令集和硬件支持,最終只在個別場景下上線,期待支持低精度矩陣計(jì)算和稀疏矩陣計(jì)算的硬件早日出現(xiàn)。
未來計(jì)劃
通用用戶表征學(xué)習(xí)。前面介紹的DUPN 是一個非常不錯的用戶表征學(xué)習(xí)模型,但基于query 的attention 只適合搜索,同時缺少基于日志來源的attention,難以推廣到其他業(yè)務(wù),在思考做一個能夠適合多個業(yè)務(wù)場景的用戶表征模型,非搜索業(yè)務(wù)做些簡單fine tuning 就能取得比較好的效果;同時用戶購物偏好受季節(jié)和周期等影響,時間跨度非常大,最近K個行為序列假設(shè)太簡單,我們在思考能夠做life-long learning 的模型,能夠?qū)W習(xí)用戶過去幾年的行為序列;搜索鏈路聯(lián)合優(yōu)化。從用戶進(jìn)入搜索到離開搜索鏈路中的整體優(yōu)化,比如 搜索前的query 引導(dǎo)(底紋),搜索中的商品和內(nèi)容排序,搜索后的 query推薦(錦囊)等場景;跨場景聯(lián)合優(yōu)化。今年搜索內(nèi)部主搜索和店鋪內(nèi)搜索聯(lián)合優(yōu)化取得了很好的結(jié)果,未來希望能夠拓展在更多大流量場景,提高手淘的整體購物體驗(yàn);多目標(biāo)聯(lián)合優(yōu)化。搜索除了成交外,還需要承擔(dān)賣家多樣性,流量公平性,流量商業(yè)化等居多平臺和賣家的訴求,搜索產(chǎn)品中除了商品搜索外還有“穹頂”,“主題搜索”,“錦囊”,“內(nèi)容搜索”等非商品搜索內(nèi)容,不同搜索目標(biāo)和不同內(nèi)容(物種)之間的聯(lián)合優(yōu)化未來很值得深挖。
三、最常見的人工智能算法都有哪些?它們在求解過程中與傳統(tǒng)算法相比,有什么特點(diǎn)
很多很多,早期的算法特點(diǎn)是通過規(guī)則方式建立知識庫,指導(dǎo)算法完成計(jì)算;當(dāng)前算法的特點(diǎn)是不編程高速計(jì)算機(jī)如何計(jì)算,而是讓計(jì)算機(jī)自己學(xué)習(xí),這些算法可以看一下163上斯坦?!稒C(jī)器學(xué)習(xí)》的公開課。
四、人工智能的實(shí)現(xiàn)方法有哪些?
人工智能在計(jì)算機(jī)上實(shí)現(xiàn)時有2種不同的方式:
一種是采用傳統(tǒng)的編程技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動物機(jī)體所用的方法相同。這種方法叫工程學(xué)方法(ENGINEERING APPROACH),它已在一些領(lǐng)域內(nèi)作出了成果,如文字識別、電腦下棋等。
另一種是模擬法(MODELING APPROACH),它不僅要看效果,還要求實(shí)現(xiàn)方法也和人類或生物機(jī)體所用的方法相同或相類似。
遺傳算法(GENERIC ALGORITHM,簡稱GA)和人工神經(jīng)網(wǎng)絡(luò)(ARTIFICIAL NEURAL NETWORK,簡稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進(jìn)化機(jī)制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人類或動物大腦中神經(jīng)細(xì)胞的活動方式。為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細(xì)規(guī)定程序邏輯,如果游戲簡單,還是方便的。如果游戲復(fù)雜,角色數(shù)量和活動空間增加,相應(yīng)的邏輯就會很復(fù)雜(按指數(shù)式增長),人工編程就非常繁瑣,容易出錯。而一旦出錯,就必須修改原程序,重新編譯、調(diào)試,最后為用戶提供一個新的版本或提供一個新補(bǔ)丁,非常麻煩。采用后一種方法時,編程者要為每一角色設(shè)計(jì)一個智能系統(tǒng)(一個模塊)來進(jìn)行控制,這個智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠?qū)W習(xí),能漸漸地適應(yīng)環(huán)境,應(yīng)付各種復(fù)雜情況。這種系統(tǒng)開始也常犯錯誤,但它能吸取教訓(xùn),下一次運(yùn)行時就可能改正,至少不會永遠(yuǎn)錯下去,用不到發(fā)布新版本或打補(bǔ)丁。利用這種方法來實(shí)現(xiàn)人工智能,要求編程者具有生物學(xué)的思考方法,入門難度大一點(diǎn)。但一旦入了門,就可得到廣泛應(yīng)用。由于這種方法編程時無須對角色的活動規(guī)律做詳細(xì)規(guī)定,應(yīng)用于復(fù)雜問題,通常會比前一種方法更省力。
以上就是關(guān)于列舉一種經(jīng)典人工智能算法相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。
推薦閱讀:
請列舉五種以上常用的網(wǎng)站推廣方法(請列舉五種以上常用的網(wǎng)站推廣方法是)
列舉網(wǎng)絡(luò)推廣方的主要方式(列舉網(wǎng)絡(luò)推廣方的主要方式有)
列舉目前主要的B2B電子商務(wù)模式(請談?wù)刡2b電子商務(wù)網(wǎng)站有哪些模式)
設(shè)計(jì)包含哪些內(nèi)容(室內(nèi)設(shè)計(jì)包含哪些內(nèi)容)