-
當(dāng)前位置:首頁(yè) > 創(chuàng)意學(xué)院 > 技術(shù) > 專(zhuān)題列表 > 正文
openai(openai 入門(mén))_1
大家好!今天讓創(chuàng)意嶺的小編來(lái)大家介紹下關(guān)于openai的問(wèn)題,以下是小編對(duì)此問(wèn)題的歸納整理,讓我們一起來(lái)看看吧。
ChatGPT國(guó)內(nèi)免費(fèi)在線使用,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對(duì)話答疑等等
只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫(xiě)出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁(yè)版、PC客戶端
官網(wǎng):https://ai.de1919.com
本文目錄:
一、openai哪里下載
openai百度文庫(kù)下載。
先把你下載的openal32.dll刪掉,也就是c:wiindowssystem32 文件夾中的openai32.dll和游戲文件夾中的openai32.dll 。然后下載OpenAL 最后再裝上OpenAL 這就行了。
入口點(diǎn)函數(shù)只應(yīng)執(zhí)行簡(jiǎn)單的初始化任務(wù),不應(yīng)調(diào)用任何其他 DLL 加載函數(shù)或終止函數(shù)。例如,在入口點(diǎn)函數(shù)中,不應(yīng)直接或間接調(diào)用 LoadLibrary 函數(shù)或 LoadLibraryEx 函數(shù)。此外,不應(yīng)在進(jìn)程終止時(shí)調(diào)用 FreeLibrary 函數(shù)。
DLL 故障排除工具:
可以使用多個(gè)工具來(lái)幫助您解決 DLL 問(wèn)題。以下是其中的部分工具。 Dependency WalkerDependency Walker 工具可以遞歸掃描以尋找程序所使用的所有依賴(lài) DLL。
當(dāng)您在 Dependency Walker 中打開(kāi)程序時(shí),Dependency Walker 會(huì)執(zhí)行下列檢查: Dependency Walker 檢查是否丟失 DLL。 Dependency Walker 檢查是否存在無(wú)效的程序文件或 DLL。
二、openai經(jīng)常網(wǎng)絡(luò)錯(cuò)誤
ChatGPT network error怎么解決?31 人關(guān)注0 條評(píng)論
寫(xiě)回答
寫(xiě)回答
復(fù)制下人家的回答
“網(wǎng)絡(luò)錯(cuò)誤”可能不是BUG。這可能是OpenAI故意設(shè)置的限制,因?yàn)镺penAI正受到ChatGPT請(qǐng)求的狂轟濫炸,無(wú)法響應(yīng)所有請(qǐng)求。
如果AI的響應(yīng)時(shí)間超過(guò)一分鐘,它就會(huì)自動(dòng)失敗。
這意味著:
1. 你的瀏覽器、賬戶或網(wǎng)絡(luò)等都沒(méi)有問(wèn)題。
2. 無(wú)論你我做什么都無(wú)法彌補(bǔ)這個(gè)錯(cuò)誤
3.OpenAI需要改變這一限制。
然后后面發(fā)了個(gè)代碼。還是報(bào)錯(cuò),但是不會(huì)清除回答。
實(shí)測(cè)用漢語(yǔ)說(shuō)的問(wèn)題將一直會(huì)出現(xiàn)這個(gè)問(wèn)題,但是你可以一直說(shuō)英語(yǔ),將漢語(yǔ)轉(zhuǎn)換為英語(yǔ),然后就可以用了,貌似沒(méi)有限制,另外建議使用英語(yǔ),英語(yǔ)版語(yǔ)料庫(kù)比漢語(yǔ)版的強(qiáng)大點(diǎn),漢語(yǔ)版的語(yǔ)料庫(kù)總感覺(jué)不對(duì),有股說(shuō)不來(lái)的感覺(jué)。
三、openai能當(dāng)爬蟲(chóng)使嗎
你好,可以的,Spinning Up是OpenAI開(kāi)源的面向初學(xué)者的深度強(qiáng)化學(xué)習(xí)資料,其中列出了105篇深度強(qiáng)化學(xué)習(xí)領(lǐng)域非常經(jīng)典的文章, 見(jiàn) Spinning Up:
博主使用Python爬蟲(chóng)自動(dòng)爬取了所有文章,而且爬下來(lái)的文章也按照網(wǎng)頁(yè)的分類(lèi)自動(dòng)分類(lèi)好。
見(jiàn)下載資源:Spinning Up Key Papers
源碼如下:
import os
import time
import urllib.request as url_re
import requests as rq
from bs4 import BeautifulSoup as bf
'''Automatically download all the key papers recommended by OpenAI Spinning Up.
See more info on: https://spinningup.openai.com/en/latest/spinningup/keypapers.html
Dependency:
bs4, lxml
'''
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'
}
spinningup_url = 'https://spinningup.openai.com/en/latest/spinningup/keypapers.html'
paper_id = 1
def download_pdf(pdf_url, pdf_path):
"""Automatically download PDF file from Internet
Args:
pdf_url (str): url of the PDF file to be downloaded
pdf_path (str): save routine of the downloaded PDF file
"""
if os.path.exists(pdf_path): return
try:
with url_re.urlopen(pdf_url) as url:
pdf_data = url.read()
with open(pdf_path, "wb") as f:
f.write(pdf_data)
except: # fix link at [102]
pdf_url = r"https://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/Neural-Netw-2008-21-682_4867%5b0%5d.pdf"
with url_re.urlopen(pdf_url) as url:
pdf_data = url.read()
with open(pdf_path, "wb") as f:
f.write(pdf_data)
time.sleep(10) # sleep 10 seconds to download next
def download_from_bs4(papers, category_path):
"""Download papers from Spinning Up
Args:
papers (bs4.element.ResultSet): 'a' tags with paper link
category_path (str): root dir of the paper to be downloaded
"""
global paper_id
print("Start to ownload papers from catagory {}...".format(category_path))
for paper in papers:
paper_link = paper['href']
if not paper_link.endswith('.pdf'):
if paper_link[8:13] == 'arxiv':
# paper_link = "https://arxiv.org/abs/1811.02553"
paper_link = paper_link[:18] + 'pdf' + paper_link[21:] + '.pdf' # arxiv link
elif paper_link[8:18] == 'openreview': # openreview link
# paper_link = "https://openreview.net/forum?id=ByG_3s09KX"
paper_link = paper_link[:23] + 'pdf' + paper_link[28:]
elif paper_link[14:18] == 'nips': # neurips link
paper_link = "https://proceedings.neurips.cc/paper/2017/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf"
else: continue
paper_name = '[{}] '.format(paper_id) + paper.string + '.pdf'
if ':' in paper_name:
paper_name = paper_name.replace(':', '_')
if '?' in paper_name:
paper_name = paper_name.replace('?', '')
paper_path = os.path.join(category_path, paper_name)
download_pdf(paper_link, paper_path)
print("Successfully downloaded {}!".format(paper_name))
paper_id += 1
print("Successfully downloaded all the papers from catagory {}!".format(category_path))
def _save_html(html_url, html_path):
"""Save requested HTML files
Args:
html_url (str): url of the HTML page to be saved
html_path (str): save path of HTML file
"""
html_file = rq.get(html_url, headers=headers)
with open(html_path, "w", encoding='utf-8') as h:
h.write(html_file.text)
def download_key_papers(root_dir):
"""Download all the key papers, consistent with the categories listed on the website
Args:
root_dir (str): save path of all the downloaded papers
"""
# 1. Get the html of Spinning Up
spinningup_html = rq.get(spinningup_url, headers=headers)
# 2. Parse the html and get the main category ids
soup = bf(spinningup_html.content, 'lxml')
# _save_html(spinningup_url, 'spinningup.html')
# spinningup_file = open('spinningup.html', 'r', encoding="UTF-8")
# spinningup_handle = spinningup_file.read()
# soup = bf(spinningup_handle, features='lxml')
category_ids = []
categories = soup.find(name='div', attrs={'class': 'section', 'id': 'key-papers-in-deep-rl'}).\
find_all(name='div', attrs={'class': 'section'}, recursive=False)
for category in categories:
category_ids.append(category['id'])
# 3. Get all the categories and make corresponding dirs
category_dirs = []
if not os.path.exitis(root_dir):
os.makedirs(root_dir)
for category in soup.find_all(name='h4'):
category_name = list(category.children)[0].string
if ':' in category_name: # replace ':' with '_' to get valid dir name
category_name = category_name.replace(':', '_')
category_path = os.path.join(root_dir, category_name)
category_dirs.append(category_path)
if not os.path.exists(category_path):
os.makedirs(category_path)
# 4. Start to download all the papers
print("Start to download key papers...")
for i in range(len(category_ids)):
category_path = category_dirs[i]
category_id = category_ids[i]
content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})
inner_categories = content.find_all('div')
if inner_categories != []:
for category in inner_categories:
category_id = category['id']
inner_category = category.h4.text[:-1]
inner_category_path = os.path.join(category_path, inner_category)
if not os.path.exists(inner_category_path):
os.makedirs(inner_category_path)
content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})
papers = content.find_all(name='a',attrs={'class': 'reference external'})
download_from_bs4(papers, inner_category_path)
else:
papers = content.find_all(name='a',attrs={'class': 'reference external'})
download_from_bs4(papers, category_path)
print("Download Complete!")
if __name__ == "__main__":
root_dir = "key-papers"
download_key_papers(root_dir)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
四、openai公司上市了嗎
openai公司沒(méi)有·上市。根據(jù)查詢(xún)相關(guān)資料信息,OpenAI是一家通用人工智能(AGI)的研究公司,為了確保AI能夠造福全人類(lèi),OpenAI提供了一個(gè)基于AI的開(kāi)發(fā)和研究框架,這也是其名字的來(lái)源(開(kāi)放AI能力),目前還沒(méi)有上市。
以上就是關(guān)于openai相關(guān)問(wèn)題的回答。希望能幫到你,如有更多相關(guān)問(wèn)題,您也可以聯(lián)系我們的客服進(jìn)行咨詢(xún),客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。
推薦閱讀:
下載okpay錢(qián)包并安裝(gopay支付平臺(tái)注冊(cè))
商丘園林景觀設(shè)計(jì)(商丘園林設(shè)計(jì)公司)
無(wú)錫品牌策劃設(shè)計(jì)怎么選(無(wú)錫品牌策劃設(shè)計(jì)怎么選擇)
猜你喜歡
港大相當(dāng)于國(guó)內(nèi)什么大學(xué)(港中文和港大哪個(gè)好)
mchat下載官網(wǎng)(mchat移動(dòng)官方下載)
ai對(duì)話聊天軟件免費(fèi)(ai對(duì)話聊天軟件免費(fèi))
華為芯片是美國(guó)的嗎(華為芯片是美國(guó)的嗎知乎)
毒平臺(tái)鑒定超過(guò)三天(毒平臺(tái)鑒定超過(guò)三天了)
華為免費(fèi)表盤(pán)下載(華為免費(fèi)表盤(pán)下載不了應(yīng)用)