-
當(dāng)前位置:首頁 > 創(chuàng)意學(xué)院 > 技術(shù) > 專題列表 > 正文
時(shí)間序列預(yù)測(cè)數(shù)據(jù)增強(qiáng)(時(shí)間序列預(yù)測(cè)要求數(shù)據(jù)量比較大)
大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于時(shí)間序列預(yù)測(cè)數(shù)據(jù)增強(qiáng)的問題,以下是小編對(duì)此問題的歸納整理,讓我們一起來看看吧。
開始之前先推薦一個(gè)非常厲害的Ai人工智能工具,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對(duì)話答疑等等
只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端
官網(wǎng):https://ai.de1919.com
創(chuàng)意嶺作為行業(yè)內(nèi)優(yōu)秀企業(yè),服務(wù)客戶遍布全國(guó),網(wǎng)絡(luò)營(yíng)銷相關(guān)業(yè)務(wù)請(qǐng)撥打175-8598-2043,或微信:1454722008
本文目錄:
一、python如何預(yù)測(cè)下一年的數(shù)據(jù)
顧名思義,時(shí)間序列數(shù)據(jù)是一種隨時(shí)間變化的數(shù)據(jù)類型。例如,24小時(shí)內(nèi)的溫度,一個(gè)月內(nèi)各種產(chǎn)品的價(jià)格,一年中特定公司的股票價(jià)格。諸如長(zhǎng)期短期記憶網(wǎng)絡(luò)(LSTM)之類的高級(jí)深度學(xué)習(xí)模型能夠捕獲時(shí)間序列數(shù)據(jù)中的模式,因此可用于對(duì)數(shù)據(jù)的未來趨勢(shì)進(jìn)行預(yù)測(cè)。在本文中,您將看到如何使用LSTM算法使用時(shí)間序列數(shù)據(jù)進(jìn)行將來的預(yù)測(cè)。
二、時(shí)間序列之分解預(yù)測(cè)
時(shí)間序列是一種常見的數(shù)據(jù)形式,如經(jīng)濟(jì)數(shù)據(jù)大多數(shù)都以時(shí)間序列的形式給出。
通常情況下,時(shí)間序列具有不平穩(wěn)性。一般我們將非平穩(wěn)時(shí)間序列的構(gòu)成要素分為四種,即趨勢(shì)性(T)、周期性(C)、季節(jié)性(S)、隨機(jī)性或不規(guī)則波動(dòng)(T);傳統(tǒng)時(shí)間序列分析的一項(xiàng)主要內(nèi)容就是將這些影響因素從時(shí)間序列中分離出來,并將他們之間的關(guān)系用一定的數(shù)學(xué)關(guān)系式表達(dá)出來,然后進(jìn)行分析,這種做法稱為分解分析;
按四種因素對(duì)時(shí)間序列的影響方式不同,時(shí)間序列可分解為乘法模型、加法模型、混合模型等,最常用的為乘法模型,其表現(xiàn)形式為:
由于分析周期性成分需要有多年的數(shù)據(jù),實(shí)際中很難得到多年的數(shù)據(jù)來發(fā)現(xiàn)周期性成分,因此分解模型又精簡(jiǎn)為:
針對(duì)這類序列的預(yù)測(cè)方法主要有季節(jié)性多元回歸預(yù)測(cè)、季節(jié)自回歸模型和時(shí)間序列分解法預(yù)測(cè);我曾經(jīng)在2個(gè)項(xiàng)目中用到分解法預(yù)測(cè),通常按照以下步驟進(jìn)行:
1、確定并分離季節(jié)成分。計(jì)算季節(jié)指數(shù),以確定時(shí)間序列中的季節(jié)成分,然后將季節(jié)成分從時(shí)間序列中分離出去,即用每一個(gè)時(shí)間序列觀測(cè)值除以相應(yīng)的季節(jié)指數(shù),以消除季節(jié)成分;
2、建立預(yù)測(cè)模型并進(jìn)行預(yù)測(cè)。對(duì)消除季節(jié)成分的時(shí)間序列建立適當(dāng)?shù)念A(yù)測(cè)模型,并根據(jù)這一模型進(jìn)行預(yù)測(cè)。
3、計(jì)算出最后的預(yù)測(cè)值。用預(yù)測(cè)值乘以相應(yīng)的季節(jié)指數(shù),得到最終的預(yù)測(cè)值。
下面采用此方法根據(jù)某大型百貨公司1991-2000年各季度銷售額數(shù)據(jù)針對(duì)2001年各季度銷售額進(jìn)行預(yù)測(cè)。在開展分析之前,可以先作一個(gè)趨勢(shì)圖,通過圖形觀察數(shù)據(jù)隨時(shí)間的變化趨勢(shì)。
序列具有明顯的季節(jié)性和趨勢(shì)性,下面開始計(jì)算季節(jié)指數(shù),季節(jié)指數(shù)的計(jì)算方法有很多種,我用了移動(dòng)平均趨勢(shì)剔出法,主要步驟為:
1、 計(jì)算移動(dòng)平均值(采用4項(xiàng)移動(dòng)平均),并將結(jié)果進(jìn)行“中心化”處理。也即是將移動(dòng)平均的結(jié)果再進(jìn)行一次二項(xiàng)的移動(dòng)平均,即得出“中心化移動(dòng)平均值”(CMA)。
2、 計(jì)算移動(dòng)平均值,也稱季節(jié)比率,即將序列的各觀察值除以相應(yīng)的中心化移動(dòng)平均值,然后再計(jì)算出各比值的季度平均值;
3、 季節(jié)指數(shù)調(diào)整。由于各季節(jié)指數(shù)的平均數(shù)應(yīng)等于1或100%,因此,再將每個(gè)季節(jié)比率的平均值除以他們的總平均值;
調(diào)整后的季節(jié)指數(shù)如下:
剔除季節(jié)成分后的銷售額趨勢(shì)明顯,采用多項(xiàng)式擬合可以得到很好的效果,回歸擬合度達(dá)到了0.9482,根據(jù)擬合方程我們便可以進(jìn)行后期趨勢(shì)預(yù)測(cè),再乘上季節(jié)指數(shù),便得到最終預(yù)測(cè)值;
三、如何用excel預(yù)測(cè)時(shí)間序列數(shù)據(jù)
如下實(shí)例用季節(jié)性預(yù)測(cè)求2005年各季度用電量,把數(shù)據(jù)輸入到excel中
輸入原始數(shù)據(jù),計(jì)算三點(diǎn)平滑值,消除季節(jié)變動(dòng)和不規(guī)則變動(dòng),保留長(zhǎng)期趨勢(shì)。
計(jì)算方法:2136=(435+2217+3756)/3
1122.33=(2217+3756+394)/3........以此類推。
計(jì)算季節(jié)性指標(biāo):季節(jié)性指標(biāo)=用電量÷三點(diǎn)滑動(dòng)值。
計(jì)算季節(jié)性指標(biāo)校正值:
校正系數(shù)=4÷季節(jié)性指標(biāo)之和=4÷5.525=0.72
校正后季節(jié)性指標(biāo)=季節(jié)性指標(biāo)*校正系數(shù)
求預(yù)測(cè)模型:求出S1和s2同時(shí)也利用公式算出at和bt,α取0.2。
計(jì)算公式可參照下列表格也可自行百度。
求預(yù)測(cè)模型為:
求預(yù)測(cè)值。以2004年第4季度為基期,套用公式計(jì)算預(yù)測(cè)2005年各季度的旅游人數(shù)
第一季度:y=(6433.89+486.61*1)*0.42=2906.61
第二季度:y=(6433.89+3486.61*2)*0.99=13273.04
第三季度:y=(6433.89+3486.61*3)*2.15=36321.50
第四季度:y=(6433.89+3486.61*4)*0.44 =8967.35
由此可以計(jì)算出2005年全年度的游客人數(shù)預(yù)測(cè)值為:
y=四個(gè)季度相加=61468.49 (10的四次方千瓦)
四、時(shí)間序列(time series)系列1—簡(jiǎn)介
筆者在工作中,接觸到了客流數(shù)據(jù),網(wǎng)絡(luò)質(zhì)量數(shù)據(jù)等,零零散散的對(duì)時(shí)間序列分析方法進(jìn)行了學(xué)習(xí)和實(shí)踐。
在平時(shí)的工作中,大多數(shù)公司都會(huì)有很多時(shí)序數(shù)據(jù),也都離不開時(shí)序數(shù)據(jù)的挖掘。
所以現(xiàn)在整理分享出來,忘大家批評(píng)指正。
時(shí)間序列數(shù)據(jù)(time series data)是在不同時(shí)間上收集到的數(shù)據(jù),用于描述現(xiàn)象隨時(shí)間變化的情況。
時(shí)間序列是一種典型的數(shù)據(jù),具有隨時(shí)間變化的特征。在大多數(shù)場(chǎng)景中,都能見到的一種數(shù)據(jù)類型。
如客流數(shù)據(jù),股票數(shù)據(jù),銷售額數(shù)據(jù),網(wǎng)絡(luò)日志,某些KPI指標(biāo)等等內(nèi)容。
一般情況下,時(shí)間序列數(shù)據(jù)可以分解為3個(gè)部分,如下圖所示:
首先我們要有個(gè)目標(biāo),想通過時(shí)間序列數(shù)據(jù)完成什么樣的目標(biāo),短期、中期、長(zhǎng)期預(yù)測(cè)。然后需要盡可能的收集時(shí)間序列數(shù)據(jù),數(shù)據(jù)越多,能夠發(fā)現(xiàn)更多數(shù)據(jù)特征,預(yù)測(cè)會(huì)更準(zhǔn)確。時(shí)間序列需要對(duì)數(shù)據(jù)中的缺失、異常、范圍等進(jìn)行處理。
常見的時(shí)間序列數(shù)據(jù)預(yù)測(cè)方法,筆者主要總結(jié)一下幾種:
以上就是關(guān)于時(shí)間序列預(yù)測(cè)數(shù)據(jù)增強(qiáng)相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。
推薦閱讀:
杭州小區(qū)的景觀設(shè)計(jì)施工(杭州小區(qū)的景觀設(shè)計(jì)施工時(shí)間)
小紅書背景圖審核要幾天(小紅書背景圖審核要幾天時(shí)間)
學(xué)電商要多久(學(xué)電商要多久時(shí)間要多少錢)
有創(chuàng)意的產(chǎn)品名字(賣好物的創(chuàng)意名字)_1
網(wǎng)絡(luò)營(yíng)銷信息(網(wǎng)絡(luò)營(yíng)銷信息傳遞模型)
問大家
濟(jì)南千佛山相親大會(huì)0還舉行嗎?怎么報(bào)名?什么時(shí)間舉辦?
0年千佛山相親大會(huì)什么時(shí)間舉辦呢?還是天喜緣龐靜主持嗎
0年千佛山相親大會(huì)具體時(shí)間?濟(jì)南千佛山相親會(huì)怎么報(bào)名?
0年濟(jì)南千佛山相親會(huì)什么時(shí)間舉辦?單身找對(duì)象平臺(tái)在哪里
0年濟(jì)南千佛山相親大會(huì)什么時(shí)間開始?怎么報(bào)名呢?求推薦
泉城濟(jì)南婚介所哪個(gè)口碑好?紅娘比較靠譜的?開的時(shí)間比較久的?
山東濟(jì)南千佛山相親大會(huì)具體報(bào)名時(shí)間?怎么報(bào)名呢?
0年濟(jì)南千佛山三月三、七夕相親大會(huì)報(bào)名時(shí)間?哪里報(bào)名?
0年濟(jì)南千佛山相親大會(huì)報(bào)名時(shí)間?報(bào)名地點(diǎn)?具體舉辦時(shí)間
濟(jì)南婚介排行?不要婚托兒,公司實(shí)力強(qiáng)的?時(shí)間久的?正規(guī)的
濟(jì)南哪家婚介所專業(yè)靠譜有實(shí)力服務(wù)好?資源多的、真實(shí)可信的?