-
當(dāng)前位置:首頁 > 創(chuàng)意學(xué)院 > 技術(shù) > 專題列表 > 正文
人工智能提問問題(人工智能提問問題有哪些)
大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于人工智能提問問題的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。
ChatGPT國內(nèi)免費在線使用,能給你生成想要的原創(chuàng)文章、方案、文案、工作計劃、工作報告、論文、代碼、作文、做題和對話答疑等等
你只需要給出你的關(guān)鍵詞,它就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端,官網(wǎng):https://ai.de1919.com
本文目錄:
一、微機課提問——手寫版。機器翻譯。eliza。人工智能。
人工智能(Artificial Intelligence) ,英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。 人工智能是計算機科學(xué)的一個分支,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式作出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。“人工智能”一詞最初是在1956 年Dartmouth學(xué)會上提出的。從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之?dāng)U展。人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項工作的人必須懂得計算機知識,心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機器學(xué)習(xí),計算機視覺等等,總的說來,人工智能研究的一個主要目標(biāo)是使機器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。但不同的時代、不同的人對這種“復(fù)雜工作”的理解是不同的。例如繁重的科學(xué)和工程計算本來是要人腦來承擔(dān)的,現(xiàn)在計算機不但能完成這種計算, 而且能夠比人腦做得更快、更準(zhǔn)確,因之當(dāng)代人已不再把這種計算看作是“需要人類智能才能完成的復(fù)雜任務(wù)”, 可見復(fù)雜工作的定義是隨著時代的發(fā)展和技術(shù)的進(jìn)步而變化的, 人工智能這門科學(xué)的具體目標(biāo)也自然隨著時代的變化而發(fā)展。它一方面不斷獲得新的進(jìn)展,一方面又轉(zhuǎn)向更有意義、更加困難的目標(biāo)。目前能夠用來研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機器就是計算機, 人工智能的發(fā)展歷史是和計算機科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機科學(xué)以外, 人工智能還涉及信息論、控制論、自動化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。人工智能學(xué)科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機器學(xué)習(xí)和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機視覺、智能機器人、自動程序設(shè)計等方面。
[編輯本段]【人工和智能】
人工智能的定義可以分為兩部分,即“人工”和“智能”?!叭斯ぁ北容^好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或著人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。
關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。
人工智能目前在計算機領(lǐng)域內(nèi),得到了愈加廣泛的重視。并在機器人,經(jīng)濟(jì)政治決策,控制系統(tǒng),仿真系統(tǒng)中得到應(yīng)用。
[編輯本段]【人工智能的定義】
著名的美國斯坦福大學(xué)人工智能研究中心尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關(guān)于知識的學(xué)科――怎樣表示知識以及怎樣獲得知識并使用知識的科學(xué)?!倍硪粋€美國麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人工智能就是研究如何使計算機去做過去只有人才能做的智能工作?!边@些說法反映了人工智能學(xué)科的基本思想和基本內(nèi)容。即人工智能是研究人類智能活動的規(guī)律,構(gòu)造具有一定智能的人工系統(tǒng),研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應(yīng)用計算機的軟硬件來模擬人類某些智能行為的基本理論、方法和技術(shù)。
人工智能(Artificial Intelligence,簡稱AI)是計算機學(xué)科的一個分支,二十世紀(jì)七十年代以來被稱為世界三大尖端技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認(rèn)為是二十一世紀(jì)(基因工程、納米科學(xué)、人工智能)三大尖端技術(shù)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學(xué)科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統(tǒng)。
人工智能是研究使計算機來模擬人的某些思維過程和智能行為(如學(xué)習(xí)、推理、思考、規(guī)劃等)的學(xué)科,主要包括計算機實現(xiàn)智能的原理、制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計算機科學(xué)、心理學(xué)、哲學(xué)和語言學(xué)等學(xué)科??梢哉f幾乎是自然科學(xué)和社會科學(xué)的所有學(xué)科,其范圍已遠(yuǎn)遠(yuǎn)超出了計算機科學(xué)的范疇,人工智能與思維科學(xué)的關(guān)系是實踐和理論的關(guān)系,人工智能是處于思維科學(xué)的技術(shù)應(yīng)用層次,是它的一個應(yīng)用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進(jìn)人工智能的突破性的發(fā)展,數(shù)學(xué)常被認(rèn)為是多種學(xué)科的基礎(chǔ)科學(xué),數(shù)學(xué)也進(jìn)入語言、思維領(lǐng)域,人工智能學(xué)科也必須借用數(shù)學(xué)工具,數(shù)學(xué)不僅在標(biāo)準(zhǔn)邏輯、模糊數(shù)學(xué)等范圍發(fā)揮作用,數(shù)學(xué)進(jìn)入人工智能學(xué)科,它們將互相促進(jìn)而更快地發(fā)展。
[編輯本段]【實際應(yīng)用】
機器視覺:指紋識別,人臉識別,視網(wǎng)膜識別,虹膜識別,掌紋識別,專家系統(tǒng),智能搜索,定理證明,博弈,自動程序設(shè)計,還有航天應(yīng)用等。
[編輯本段]【學(xué)科范疇】
人工智能是一門邊沿學(xué)科,屬于自然科學(xué)和社會科學(xué)的交叉。
[編輯本段]【涉及學(xué)科】
哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計算機科學(xué),信息論,控制論,不定性論,仿生學(xué),
[編輯本段]【研究范疇】
自然語言處理,知識表現(xiàn),智能搜索,推理,規(guī)劃,機器學(xué)習(xí),知識獲取,組合調(diào)度問題,感知問題,模式識別,邏輯程序設(shè)計,軟計算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法
[編輯本段]【應(yīng)用領(lǐng)域】
智能控制,機器人學(xué),語言和圖像理解,遺傳編程
[編輯本段]【意識和人工智能的區(qū)別】
人工智能就其本質(zhì)而言,是對人的思維的信息過程的模擬。
對于人的思維模擬可以從兩條道路進(jìn)行,一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機制,制造出“類人腦”的機器;二是功能模擬,暫時撇開人腦的內(nèi)部結(jié)構(gòu),而從其功能過程進(jìn)行模擬?,F(xiàn)代電子計算機的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。
人工智能不是人的智能,更不會超過人的智能。
“機器思維”同人類思維的本質(zhì)區(qū)別:
1.人工智能純系無意識的機械的物理的過程,人類智能主要是生理和心理的過程。
2.人工智能沒有社會性。
3.人工智能沒有人類的意識所特有的能動的創(chuàng)造能力。
4.兩者總是人腦的思維在前,電腦的功能在后。
[編輯本段]【強人工智能和弱人工智能】
人工智能的一個比較流行的定義,也是該領(lǐng)域較早的定義,是由約翰·麥卡錫(John McCarthy|)在1956年的達(dá)特矛斯會議(Dartmouth Conference)上提出的:人工智能就是要讓機器的行為看起來就象是人所表現(xiàn)出的智能行為一樣。但是這個定義似乎忽略了強人工智能的可能性(見下)。另一個定義指人工智能是人造機器所表現(xiàn)出來的智能性??傮w來講,目前對人工智能的定義大多可劃分為四類,即機器“像人一樣思考”、“像人一樣行動”、“理性地思考”和“理性地行動”。這里“行動”應(yīng)廣義地理解為采取行動,或制定行動的決策,而不是肢體動作。
強人工智能
強人工智能觀點認(rèn)為有可能制造出真正能推理(Reasoning)和解決問題(Problem_solving)的智能機器,并且,這樣的機器能將被認(rèn)為是有知覺的,有自我意識的。強人工智能可以有兩類:
類人的人工智能,即機器的思考和推理就像人的思維一樣。
非類人的人工智能,即機器產(chǎn)生了和人完全不一樣的知覺和意識,使用和人完全不一樣的推理方式。
弱人工智能
弱人工智能觀點認(rèn)為不可能制造出能真正地推理(Reasoning)和解決問題(Problem_solving)的智能機器,這些機器只不過看起來像是智能的,但是并不真正擁有智能,也不會有自主意識。
主流科研集中在弱人工智能上,并且一般認(rèn)為這一研究領(lǐng)域已經(jīng)取得可觀的成就。強人工智能的研究則出于停滯不前的狀態(tài)下。
對強人工智能的哲學(xué)爭論
“強人工智能”一詞最初是約翰·羅杰斯·希爾勒針對計算機和其它信息處理機器創(chuàng)造的,其定義為:
“強人工智能觀點認(rèn)為計算機不僅是用來研究人的思維的一種工具;相反,只要運行適當(dāng)?shù)某绦?,計算機本身就是有思維的?!保↗ Searle in Minds Brains and Programs. The Behavioral and Brain Sciences, vol. 3, 1980)這是指使計算機從事智能的活動。在這里智能的涵義是多義的、不確定的,象下面所提到的就是其中的例子。利用計算機解決問題時,必須知道明確的程序??墒牵思词乖诓磺宄绦驎r,根據(jù)發(fā)現(xiàn)(heu- ristic)法而設(shè)法巧妙地解決了問題的情況是不少的。如識別書寫的文字、圖形、聲音等,所謂認(rèn)識模型就是一例。再有,能力因?qū)W習(xí)而得到的提高和歸納推理、依據(jù)類推而進(jìn)行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實行起來需要很長時間,對于這樣的問題,人能在很短的時間內(nèi)找出相當(dāng)好的解決方法,如競技的比賽等就是其例。還有,計算機在沒有給予充分的合乎邏輯的正確信息時,就不能理解它的意義,而人在僅是被給予不充分、不正確的信息的情況下,根據(jù)適當(dāng)?shù)难a充信息,也能抓住它的意義。自然語言就是例子。用計算機處理自然語言,稱為自然語言處理。
關(guān)于強人工智能的爭論不同于更廣義的一元論和二元論(dualism)的爭論。其爭論要點是:如果一臺機器的唯一工作原理就是對編碼數(shù)據(jù)進(jìn)行轉(zhuǎn)換,那么這臺機器是不是有思維的?希爾勒認(rèn)為這是不可能的。他舉了個中文房間的例子來說明,如果機器僅僅是對數(shù)據(jù)進(jìn)行轉(zhuǎn)換,而數(shù)據(jù)本身是對某些事情的一種編碼表現(xiàn),那么在不理解這一編碼和這實際事情之間的對應(yīng)關(guān)系的前提下,機器不可能對其處理的數(shù)據(jù)有任何理解?;谶@一論點,希爾勒認(rèn)為即使有機器通過了圖靈測試,也不一定說明機器就真的像人一樣有思維和意識。
也有哲學(xué)家持不同的觀點。Daniel C. Dennett 在其著作 Consciousness Explained 里認(rèn)為,人也不過是一臺有靈魂的機器而已,為什么我們認(rèn)為人可以有智能而普通機器就不能呢?他認(rèn)為像上述的數(shù)據(jù)轉(zhuǎn)換機器是有可能有思維和意識的。
有的哲學(xué)家認(rèn)為如果弱人工智能是可實現(xiàn)的,那么強人工智能也是可實現(xiàn)的。比如Simon Blackburn在其哲學(xué)入門教材 Think 里說道,一個人的看起來是“智能”的行動并不能真正說明這個人就真的是智能的。我永遠(yuǎn)不可能知道另一個人是否真的像我一樣是智能的,還是說她/他僅僅是看起來是智能的?;谶@個論點,既然弱人工智能認(rèn)為可以令機器看起來像是智能的,那就不能完全否定這機器是真的有智能的。Blackburn 認(rèn)為這是一個主觀認(rèn)定的問題。
需要要指出的是,弱人工智能并非和強人工智能完全對立,也就是說,即使強人工智能是可能的,弱人工智能仍然是有意義的。至少,今日的計算機能做的事,像算術(shù)運算等,在百多年前是被認(rèn)為很需要智能的。
[編輯本段]【人工智能簡史】
人工智能的傳說可以追溯到古埃及,但隨著1941年以來電子計算機的發(fā)展,技術(shù)已最終可以創(chuàng)造出機器智能,“人工智能”(Artificial Intelligence)一詞最初是在1956年Dartmouth學(xué)會上提出的,從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之?dāng)U展,在它還不長的歷史中,人工智能的發(fā)展比預(yù)想的要慢,但一直在前進(jìn),從40年前出現(xiàn)到現(xiàn)在,已經(jīng)出現(xiàn)了許多AI程序,并且它們也影響到了其它 技術(shù)的發(fā)展。
計算機時代
1941年的一項發(fā)明使信息存儲和處理的各個方面都發(fā)生了革命.這項同時在美國和德國出現(xiàn)的 發(fā)明就是電子計算機.第一臺計算機要占用幾間裝空調(diào)的大房間,對程序員來說是場惡夢:僅僅為運行一 個程序就要設(shè)置成千的線路.1949年改進(jìn)后的能存儲程序的計算機使得輸入程序變得簡單些,而且計算機 理論的發(fā)展產(chǎn)生了計算機科學(xué),并最終促使了人工智能的出現(xiàn).計算機這個用電子方式處理數(shù)據(jù)的發(fā)明, 為人工智能的可能實現(xiàn)提供了一種媒介.
AI的開端
雖然計算機為AI提供了必要的技術(shù)基礎(chǔ),但直到50年代早期人們才注意到人類智能與機器之間 的聯(lián)系. Norbert Wiener是最早研究反饋理論的美國人之一.最熟悉的反饋控制的例子是自動調(diào)溫器.它 將收集到的房間溫度與希望的溫度比較,并做出反應(yīng)將加熱器開大或關(guān)小,從而控制環(huán)境溫度.這項對反饋 回路的研究重要性在于: Wiener從理論上指出,所有的智能活動都是反饋機制的結(jié)果.而反饋機制是有可 能用機器模擬的.這項發(fā)現(xiàn)對早期AI的發(fā)展影響很大.
1955年末,Newell和Simon做了一個名為"邏輯專家"(Logic Theorist)的程序.這個程序被許多人 認(rèn)為是第一個AI程序.它將每個問題都表示成一個樹形模型,然后選擇最可能得到正確結(jié)論的那一枝來求解 問題."邏輯專家"對公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個重要的里程碑.1956年,被認(rèn)為是 人工智能之父的John McCarthy組織了一次學(xué)會,將許多對機器智能感興趣的專家學(xué)者聚集在一起進(jìn)行了一 個月的討論.他請他們到 Vermont參加 " Dartmouth人工智能夏季研究會".從那時起,這個領(lǐng)域被命名為 "人工智能".雖然 Dartmouth學(xué)會不是非常成功,但它確實集中了AI的創(chuàng)立者們,并為以后的AI研究奠定了基礎(chǔ).
Dartmouth會議后的7年中,AI研究開始快速發(fā)展.雖然這個領(lǐng)域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. Carnegie Mellon大學(xué)和MIT開始組建AI研究中心.研究面臨新的挑戰(zhàn): 下一步需 要建立能夠更有效解決問題的系統(tǒng),例如在"邏輯專家"中減少搜索;還有就是建立可以自我學(xué)習(xí)的系統(tǒng).
1957年一個新程序,"通用解題機"(GPS)的第一個版本進(jìn)行了測試.這個程序是由制作"邏輯專家" 的同一個組開發(fā)的.GPS擴(kuò)展了Wiener的反饋原理,可以解決很多常識問題.兩年以后,IBM成立了一個AI研 究組.Herbert Gelerneter花3年時間制作了一個解幾何定理的程序.
當(dāng)越來越多的程序涌現(xiàn)時,McCarthy正忙于一個AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP語言. LISP到今天還在用."LISP"的意思是"表處理"(LISt Processing),它很快就為大多數(shù)AI開發(fā)者采納.
1963年MIT從美國政府得到一筆220萬美元的資助,用于研究機器輔助識別.這筆資助來自國防部 高級研究計劃署(ARPA),已保證美國在技術(shù)進(jìn)步上領(lǐng)先于蘇聯(lián).這個計劃吸引了來自全世界的計算機科學(xué)家, 加快了AI研究的發(fā)展步伐.
大量的程序
以后幾年出現(xiàn)了大量程序.其中一個著名的叫"SHRDLU"."SHRDLU"是"微型世界"項目的一部分,包括 在微型世界(例如只有有限數(shù)量的幾何形體)中的研究與編程.在MIT由Marvin Minsky領(lǐng)導(dǎo)的研究人員發(fā)現(xiàn), 面對小規(guī)模的對象,計算機程序可以解決空間和邏輯問題.其它如在60年代末出現(xiàn)的"STUDENT"可以解決代數(shù) 問題,"SIR"可以理解簡單的英語句子.這些程序的結(jié)果對處理語言理解和邏輯有所幫助.
70年代另一個進(jìn)展是專家系統(tǒng).專家系統(tǒng)可以預(yù)測在一定條件下某種解的概率.由于當(dāng)時計算機已 有巨大容量,專家系統(tǒng)有可能從數(shù)據(jù)中得出規(guī)律.專家系統(tǒng)的市場應(yīng)用很廣.十年間,專家系統(tǒng)被用于股市預(yù) 測,幫助醫(yī)生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因為專家系統(tǒng)存儲規(guī)律和信息的能力而成為可能.
70年代許多新方法被用于AI開發(fā),著名的如Minsky的構(gòu)造理論.另外David Marr提出了機器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什么.同時期另一項成果是PROLOGE語言,于1972年提出. 80年代期間,AI前進(jìn)更為迅速,并更多地進(jìn)入商業(yè)領(lǐng)域.1986年,美國AI相關(guān)軟硬件銷售高達(dá)4.25億 美元.專家系統(tǒng)因其效用尤受需求.象數(shù)字電氣公司這樣的公司用XCON專家系統(tǒng)為VAX大型機編程.杜邦,通用 汽車公司和波音公司也大量依賴專家系統(tǒng).為滿足計算機專家的需要,一些生產(chǎn)專家系統(tǒng)輔助制作軟件的公 司,如Teknowledge和Intellicorp成立了。為了查找和改正現(xiàn)有專家系統(tǒng)中的錯誤,又有另外一些專家系統(tǒng)被設(shè)計出來.
從實驗室到日常生活
人們開始感受到計算機和人工智能技術(shù)的影響.計算機技術(shù)不再只屬于實驗室中的一小群研究人員. 個人電腦和眾多技術(shù)雜志使計算機技術(shù)展現(xiàn)在人們面前.有了象美國人工智能協(xié)會這樣的基金會.因為AI開發(fā) 的需要,還出現(xiàn)了一陣研究人員進(jìn)入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內(nèi)部的AI開發(fā)組上.
其它一些AI領(lǐng)域也在80年代進(jìn)入市場.其中一項就是機器視覺. Minsky和Marr的成果現(xiàn)在用到了生產(chǎn)線上的相機和計算機中,進(jìn)行質(zhì)量控制.盡管還很簡陋,這些系統(tǒng)已能夠通過黑白區(qū)別分辨出物件形狀的不同.到1985年美國有一百多個公司生產(chǎn)機器視覺系統(tǒng),銷售額共達(dá)8千萬美元.
但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.象 Teknowledge和Intellicorp兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究領(lǐng) 導(dǎo)者削減經(jīng)費.另一個另人失望的是國防部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機器人。由于項目缺陷和成功無望,Pentagon停止了項目的經(jīng)費.
盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復(fù)發(fā)展.新的技術(shù)在日本被開發(fā)出來,如在美國首創(chuàng)的模糊邏輯,它可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實現(xiàn)人工智能的可能途徑.總之,80年代AI被引入了市場,并顯示出實用價值.可以確信,它將是通向21世紀(jì)之匙. 人工智能技術(shù)接受檢驗 在"沙漠風(fēng)暴"行動中軍方的智能設(shè)備經(jīng)受了戰(zhàn)爭的檢驗.人工智能技術(shù)被用于導(dǎo)彈系統(tǒng)和預(yù)警顯示以 及其它先進(jìn)武器.AI技術(shù)也進(jìn)入了家庭.智能電腦的增加吸引了公眾興趣;一些面向蘋果機和IBM兼容機的應(yīng)用 軟件例如語音和文字識別已可買到;使用模糊邏輯,AI技術(shù)簡化了攝像設(shè)備.對人工智能相關(guān)技術(shù)更大的需求促 使新的進(jìn)步不斷出現(xiàn).人工智能已經(jīng)并且將繼續(xù)不可避免地改變我們的生活.
二、人工智能是否能替代教學(xué)辯論提問環(huán)節(jié)
人工智能不能替代教學(xué)辯論
2017年初“愛因斯坦”機器人誕生,通過智能應(yīng)用程序和互聯(lián)網(wǎng),用戶可以與機器人進(jìn)行游戲互動。同時,“愛因斯坦”機器人還可以通過該程序講授數(shù)學(xué)和科學(xué)等相關(guān)科目的知識,幫助一些小朋友更好地學(xué)習(xí)知識。
當(dāng)人工智能可以用更精準(zhǔn)、更有效的方法教學(xué)時,教師的優(yōu)勢何在?又將如何面對人工智能的機遇和挑戰(zhàn)?來看看一線教師和專家怎么說。
三、人工智能技術(shù)發(fā)展都有哪些擔(dān)憂問題?
隨著人工智能技術(shù)的不斷發(fā)展,大眾對于人工智能能夠產(chǎn)生的影響作用大多還是保持著一些負(fù)面的看法,下面電腦培訓(xùn)http://www.kmbdqn.cn/就一起來了解一下都有哪些擔(dān)憂吧。
1.個人正在失去對生活的控制
數(shù)字生活關(guān)鍵方面的決策被自動過渡給了由代碼驅(qū)動的「黑匣子」。人們?nèi)狈斎?,也不了解工具是如何工作的。他們犧牲了獨立性、隱私權(quán)和選擇權(quán);他們無法控制這些過程。隨著自動化系統(tǒng)變得越來越普遍和復(fù)雜,這種影響將進(jìn)一步加深。
2.數(shù)據(jù)濫用
大多數(shù)人工智能工具現(xiàn)在和將來都掌握在追求利潤的公司或追求權(quán)力的政府手中。價值觀和道德規(guī)范往往沒有被納入數(shù)字系統(tǒng),讓人們?yōu)樽约鹤鰶Q定。這些系統(tǒng)是全球聯(lián)網(wǎng)的,不容易管理或控制。
3.失業(yè)
基于代碼的機器智能的效率和其他經(jīng)濟(jì)優(yōu)勢將繼續(xù)干擾人類工作的各個方面。一些人預(yù)計新的就業(yè)機會將會出現(xiàn),另一些人則擔(dān)心大規(guī)模失業(yè)、經(jīng)濟(jì)分化加劇以及包括民粹主義起義在內(nèi)的社會動蕩。
4.個體認(rèn)知、社交和生存技能的降低
許多人認(rèn)為人工智能可以增強人的能力,但也有一些人認(rèn)為恰恰相反——人們對機器驅(qū)動網(wǎng)絡(luò)的依賴程度日益加深,將會削弱他們獨立思考、獨立于自動化系統(tǒng)采取行動以及與他人進(jìn)行有效互動的能力。
5.大混亂:自主武器、網(wǎng)絡(luò)犯罪和武器化信息
公民將更加脆弱,例如暴露于失控的網(wǎng)絡(luò)犯罪和網(wǎng)絡(luò)戰(zhàn)中。
一些人預(yù)測,由于自主軍事應(yīng)用的加速增長以及對使用武器化信息、謊言和宣傳危險地破壞人類群體的穩(wěn)定,傳統(tǒng)社會政治結(jié)構(gòu)將進(jìn)一步受到侵蝕,并可能造成重大的生命損失。一些人還擔(dān)心網(wǎng)絡(luò)犯罪分子會侵入經(jīng)濟(jì)系統(tǒng)。
四、人工智能能否代替人類, 我是不能,二辯提問題,,
我覺得不一定,就比如程序員,在一定程度上來說,被替代的可能性還是很大。人工智能的確能代替人類解決那些重復(fù)性高的代碼,當(dāng)然有些代碼也不是那么簡單就被模擬出來。只能說在一定程度上,有取代的趨勢,而且趨勢越來越強。---以上僅對程序員而言,唉,俺干嘛做個程序員....
以上就是關(guān)于人工智能提問問題相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。
推薦閱讀:
人工智能設(shè)計師月薪(人工智能設(shè)計師月薪一般多少)
如何在中國登錄chatGPT(如何在中國登錄國外的網(wǎng)站)
工業(yè)園區(qū)招商引資(產(chǎn)業(yè)園區(qū)招商)